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Abstract 

Rocking curves (RC) of Darwin-Prins type of distor- 
ted crystals have been systematically studied with 
respect to various parameters which characterize the 
crystal and its deformation. The basic formula is given 
in an earlier paper [Kato (1990). Acta Cryst. A46, 
672-681]. Through numerical analysis, characteristic 
features of RCs were deduced. In order to understand 
them, a simplified theory was developed based on a 
WKB approximation. Most of the features, in par- 
ticular the oscillatory behaviour of RCs, could be 
interpreted by the geometrical configuration of the 
entrance surface and the bending C band, which was 
defined as a region where the local wave number is 
practically pure imaginary. The concept of the C band 
is analogous to the forbidden energy band of electrons 
popular in solid-state physics. 

1. Introduction 

Rocking curves (RC) in Bragg geometry are sensitive 
to lattice distortion near the crystal surface. Taupin 
(1964) proposed a fundamental (differential) equa- 
tion to calculate the intensity of the Bragg reflec- 
tion for distorted crystals. Since then, the theory 
has been widely used in many investigations. For 
example, Burgeat & Taupin (1968) and Fukuhara & 
Takano (1977) studied experimental RCs of impurity- 
doped crystals and showed a reasonable agreement 
with the theoretical curve based on the erfc-function 
model for the lattice distortion. More recently, 
Bensoussan, Malgrange & Sauvage-Simkin (1987) 
presented a similar work for a III-IV* heterojunction 
system. Many relevant articles are cited in that paper. 
They also obtained a good agreement between 
Taupin's theory and their experimental results. It 
seems, therefore, that there remains no serious prob- 

* Groups 13-14 in IUPAC (1988) nomenclature. 
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lem in this research field from the practical point of 
view. 

All authors, however, solve Taupin's differential 
equation numerically assuming some plausible model 
for the lattice distortion depending on their own 
samples. For this reason, it seems desirable to make 
a systematic analysis of RCs based on an exact and 
analytical solution of the wave field, which has been 
obtained recently by the present author (Kato, 1990). 
This is the primary subject of the present paper. 

Here, the lattice spacing is assumed to have the 
form Do tanh (ax), where x is the coordinate normal 
to the net plane concerned. The model is similar to 
that of Bensoussan et al. (1987). By changing Do, a 
and the position of the entrance surface xe, one can 
represent various monotonic forms of the lattice 
expansion effective for diffraction. These forms give 
rise to different shapes of RC. There are parameters 
of another type characterizing the crystal concerned, 
which also change the shape of the RC. They are the 
structure factor and the normal and Borrmann 
absorption. With this complex situation in mind, 
results will be presented in terms of suitably normal- 
ized parameters (§ 3). 

One interesting phenomenon is the oscillatory 
behaviour of a RC which appears under specific con- 
ditions. The phenomenon itself was recognized in 
both numerical simulations and real experiments by 
the authors mentioned above. Here, characteristic 
properties are interpreted by a simple theory to eluci- 
date the physical significance (§ 4). 

2. Glossary of formulae and parameters 

( a ) Perfect crystals 

In order to give an idea of the present scheme of 
notation, RCs of perfect crystals are first dealt with. 
We are concerned only with the symmetrical case. 
The theoretical details are described in standard texts 

O 1992 International Union of Crystallography 
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on dynamical diffraction, for example those of 
Zachariasen (1945), James (1962), Batterman & Cole 
(1964) and Kato (1974). Also, the previous paper by 
the present author (Kato, 1992) is referred to. Follow- 
ing this subsection, a summary for distorted crystals 
will be presented. 

(i) Vacuum waves. 
Incident wave: 

diffracted wave: 

where 

De exp (iKe'r);  (2.1a) 

D s exp (/Ks.r)  (2.1b) 

K e = g o - a K o  (2 .2a)  

K s = Kg - A K g .  (2.2b) 

Ko and Ks = Ko + 2~rf~ are the wave vectors satisfying 
the Bragg condition exactly in a kinematical sense, f~ 
being the reflection vector. A Ko and A K s indicate the 
deviation of the wave vectors from the exact Bragg 
condition. 

We shall take a system of rectangular axes which 
are tangential (t) and outwardly normal (x) to the 
crystal surface, respectively, within a plane defined 
by Ko and R s. The third axis will be suppressed. 

The components of any vector A defined in real or 
reciprocal space are denoted in parentheses as 
(A,, Ax). With this convention, the vectors in (2.1) 
and (2.2) are specified as follows. 

Position vector: 

Wave vector: 

r =  (t, x). (2.3) 

Ko = K(cos 0B, - s in  0B) (2.4a) 

Kg = K(cos 0~, sin 0B) (2.4b) 

AKo=(E, E/c) ,  A K s = ( E , - E / c )  (2.5a, b) 

E - - K  sin O~AO (2.6) 

c = tan 0B. (2.7) 

In these expressions, 0B is the exact Brag g angle and 
AO is the angular deviation of Ke from Ko. 

(ii) Crystal waves. 

O wave: 

G wave: 

do exp (iko-r); (2.8) 

d s exp ( /ks.r)  (2.9) 

where 

The phase angle of [ . . .  ]1/2 in the complex plane is 
fixed between 0 and 7r. The other parameters are 
defined as follows. 

e=E- (1 /2 )%+( i /2 ) l~c  (2.12) 

%= K ( - x ' ) / c o s  0s (->0) (2.13a) 

tz~=K(X"o)/COS 0B (->0) (2.13b) 

M=½KP(xgX_g)l/2/cos OB (2.14a) 

= Mo exp (i@/2) (2.14b) 

Mo=½KP(abs [XgX_g])~/E/cos OB (2.14c)? 

= arg [XgX-g]. (2.14d) 

In these expressions, P is the polarization factor 
and Xo, Xg and g-g etc. are the Fourier coefficients of 
the complex polarizability (X = X'+ ix") of the crystal, 
so that M is complex in general. The imaginary part 
of XgX-g gives rise to Borrmann effects. In the 
definition of X, the polarizability defined in electro- 
magnetic theory is multiplied by 4~r. 

(iii) The amplitude ratio and reflectivity. 

Cg = Ogl Do = (Xs/ X-g) '/2 M - '  { - e  + [ e  2 -  M2] '/2} 

(2.15) 

Reflectivity: 

R - -  [csl  2 . (2.16) 

( b ) Distorted crystals 

Here the relevant results of a previous paper (Kato, 
1990) are summarized. [P.  ] indicates the equation 
number in that paper. A few modifications are made 
in order to extend the applicability to the case includ- 
ing Borrmann absorption. * indicates modified for- 
mulae. 

Often, the following variables are used to specify 
a position instead of the coordinate x: 

s ¢ = tanh ax [a  > 0] (2.17a) 

z = (1+ ~:)/2. (2.17b) 

Also, the subscript e is attached to them to denote 
the position on the entrance surface. 

(i) The lattice distortion. We are concerned with 
the distorted crystal, in which the x component of 
the reflection vector is given in the form 

g(x) = ~-(1 / 'rrc)Do tanh (ax). 
[ P.3.2, P.3.3] (2.18) 

In other words, the assumed lattice expands along 
the x direction. The lattice is perfect in the regions 

k o = K o - A k ,  k g = K g - A k  

Ak: (E,[e2-M2]'/21c). 

(2.10a, b) 

(2.11) 

t In this paper, for generality, Mo is defined as proportional to 
(abs [gggg]) 1/2 instead of the traditional definition using [Xg[ (see 
Kato, 1992). 
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with x = +oo but has different spacings. Henceforth, 
nearly perfect regions for a sufficiently large +nix I 
are called top-perfect region (TPR) and bottom- 
perfect region (BPR), respectively. Also, the region 
with  lxl---1 is called the transient region (TR). 
Notice that the crystal in the region with x > x~ is 
virtual. 

The following parameters are introduced for hyper- 
geometric functions which will appear soon. 

9= Do/aC [P.4.2a] (2.19) 

p + q = - i[ ( e - Do)2 _ M211/2/otc 

[P.4.7a] (2.20a) 

p -  q = - i [ ( e  + Do) 2 -  M2]~/2/ otc 

[P.4.7b] (2.20b) 

a = - i O + q ,  b = l + f f , + q ,  c ' = l + q + p .  

[P.4.12a, b,c] (2.21a, b,c)t 

Here, the standard notation c is replaced by c' to 
avoid any confusion with c defined by (2.7). 

(ii) The vacuum waves. The same expressions as in 
(2.1a, b) are used for the incident and Bragg-reflected 
waves. Notice, however, that ~ is defined at x = 0. 

(ifi) Reflectivity. The rocking curve of Darwin- 
Prins type is given in the form 

R=Icol 2 

I F [ i g + q , l - i 9 + q ;  l + p + q ;  (l+sCe)/2] 12 
X F [ - i f ' + q ,  l + i g + q ;  l + p + q ;  ( l+~e) /2 ]  

[P.5.6b] (2.22) 

where 

C,, = - M ~ ( o t c / f , ) ( i ~  - p)( i~ - q) 

[P.4.16b]; [P.4.17]* (2.23 a) 

= (Xg/X_g) ~/2 M-l{[(e  - Do) 2 -  M2] ~/2- (e - Do)}. 

[P.5.7]* (2.23b) 

Comparison of (2.23b) with the expression for Cg 
[(2.15)] indicates that 1(7,12 is the reflectivity of the 
perfect crystal corresponding to BPR. The second 
factor of (2.22) is intrinsic to the lattice distortion. 

Before closing this glossary, it is worthwhile 
mentioning the normalization of equations. For this 
purpose, we shall introduce three characteristic 
distances: 

A = cMo~: a kind of extinction distance (2.24a) 

A° =/z~-~ : a measure of absorption distance (2.24b) 

Ad = t~-l: a measure of the thickness of the TR. 

(2.24c) 

Then, the formulae listed above can be rewritten in 
normalized forms with the use of the dimensionless 
quantities 

X = x / A  (2.25a) 

A = A / A a  (2.25b) 

H = Mo/ac  = Aa /A  (2.25c) 

and other ones such as / )o  = Do/Mo and g =  e/Mo. 
For example, (2.20) can be written in the form 

p + q = - i [ ( g - / ) o ) 2 -  exp i@]l/2H. (2.26) 

The normalized formulae ,are useful not only for 
considering the theoretical structure of RCs but also 
for numerical calculation. Nevertheless, since the 
transformation is a matter of simple algebraic 
manipulation, we shall not write them repeatedly. 

3. Numerical results 

In the present treatment, the lattice distortion is 
described primarily by two parameters, Do and a 
[(2.18)1 or H [(2.25c)]. Since, however, the distortion 
is defined in absolute space, the position of the 
entrance surface xe (or Ze) is an essential parameter 
which specifies the lattice distortion concerned. 
Moreover, since crystals usable for diffraction are 
limited by the absorption distance An, it is also an 
implicit parameter for the effective distortion. 

Because RCs depend on many parameters, the 
following description will be divided into four subsec- 
tions with the use of the normalized parameters 
defined by (2.24) and (2.25). First, the dependence of 
Xe is described for A<0 .1  and H =  1. However, 
non-absorbing cases are separately described since 
the behaviour is singular in a sense. Next, the depen- 
dence on absorption is described for fixed X~ and H. 
In the third subsection, H dependence for fixed X~ 
and A is dealt with. Up to this subsection, for sim- 
plicity, the phase angle • in (2.14b) is assumed to 
be zero. The behaviour for a finite q~ (the effect of 
Borrmann absorption) is given in the fourth subsec- 
tion. In the final subsection, some remarks on the 
computation will be mentioned. 

In all illustrations, for the sake of completeness, 
Do/Mo is fixed to be 3 and a is assumed to be positive. 
Therefore, the Bragg reflections corresponding to 
TPR and BPR will appear, if they exist, with centres 
at E~ Mo = - 3  and 3, respectively. The opposite sign 
assignment to a leads to similar conclusions on the 
opposite side of the E / M o  axis. 

t Since we are concerned with the solution of type a defined in 
the previous paper, which is regular in the BPR, p is replaced by 
-p. The same is applied to the sign of ~ in (2.17b). See [P.4.13b]. 

( a ) The dependence on the position Xe ( H = 1) 

(i) Non-absorbing crystals. This case has been dis- 
cussed analytically in a previous paper. Some numeri- 
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cal results are illustrated in Figs. l ( a )  and (b). The 
total reflection always appears in the angular range 
(4_> E/Mo _>2), which is that expected for a perfect 
crystal corresponding to BPR. The physical reason 
for this was discussed by Kato (1990). In neutron 
experiments, therefore, the appearance of total reflec- 
tion is not necessarily an indication of perfectness 
near the crystal surface. 

When the entrance surface locates inside the TR 
with a negative Xe, only a slight enhancement is 
detectable on the low-angle side of the total reflection. 
If X~ is positive, the enhancement is intensified. When 
the entrance surface is far above the TR ( X e / H  > 3.5), 
another enhanced reflection appears in an angular 
range near ( -2  _> E / Mo _> -4).  In the extreme case 
where Xe is sufficiently large, it tends to have a top-hat 
shape [see (vi) of Fig. l (b)] ,  which is the Bragg 
reflection corresponding to the TPR. 

More important is that oscillatory behaviour is 
expected in the angular range between the two Bragg 
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Fig. 1. Rocking curves of distorted crystals under the conditions 
A = 0 and H = 1. The label of each curve indicates the position 
of the entrance surface: (i), (ii), (iii), (iv) (v), (vi) correspond 
to ~e = {-0.6, 0.0, 0.6, 0.8, 0.998, 1}, i.e. Xe = {-0.69, 0.0, 0.69, 
1.10, 3.45, oo}. Curves indicating RCs of perfect crystals corre- 
sponding to BPR and TPR are also shown. 

reflections. This is characteristic when the TR lies 
below the crystal surface. This subject will be dis- 
cussed in § 4. In experiments in which only one 
oscillation peak appears [(iv) of Fig. l (b)] ,  it must 
not be misunderstood as the Bragg reflection corre- 
sponding to the TPR. 

(ii) Small-absorption crystals (clxc/ Mo = A -~ 0.1). 
When the parameter Xe is large and negative, the RC 
is not so characteristic. Total reflection is no longer 
expected. The behaviour of a weakly absorbing per- 
fect crystal corresponding to the BPR is nearly 
preserved. 

Fig. 2 illustrates a few examples of RCs for the 
same values of Xe and H used in Fig. 1. If Xe is 
nearly equal to zero, the Bragg reflection due to the 
BPR takes an asymmetric form and the tail on the 
low-angle side is enhanced. When X~ increases posi- 
tively, another reflection peak corresponding to the 
TPR appears, as easily anticipated. Again, more sig- 
nificant is that the tail on the high-angle side of this 
peak shows an oscillation. The number of oscillations 
increases almost proportionally to X~. Table 1 shows 
the number for different values of Xe. We notice also 
that the angular range of the oscillation is limited 
within Do+Mo->E->Mo-Do (4->E/Mo->-2 in 
our numerical model). 

( b ) The dependence on absorption 

Fig. 3 is the contour plot of the reflectivity R projec- 
ted on the A, E/Mo plane. Any section with a fixed 
A represents a rocking curve. In this figure, H = 2 
and Xe = 4.60 (~e = 0.98) are fixed. 

As mentioned in § 3(a)(i) ,  the non-absorbing case 
(the base line) is singularly different from that of 
finite absorption. The thick line indicates the angular 
range of the total reflection. Except for this special 
case, one can see oscillatory behaviour in the angular 
range 4 >  E/Mo > -2 .  The peak positions are almost 
unaltered by the absorption parameter A although 

.the intensity decreases as A increases. 

1 . 0 -  R 
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0 I I I I I 
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E~ M,, 

I I 
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Fig. 2. Rocking curves of distorted crystals under the conditions 
A=0.1 and H= 1. The labels have the same meaning as in 
Fig. 1. 
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( c ) The dependence on H 

In § 3(a),  we discussed the case with H = Ad/A  = 1. 
If either the distortion is gentle or the structure factor 
is large, it may occur that the TR is much thicker 
than the extinction distance, i.e. H >> 1. The reverse 
case is also conceivable. It is a general rule that the 
strain gradient times the extinction distance is a key 
parameter in diffraction phenomena of distorted crys- 
tals (Kato, 1964). For a fixed Do, H -t is the key 
parameter for the present problem in this sense. 

It should be noticed that the parameters p, q and 
which determine the reflectivity are linear with 

respect to H [(2.19), (2.20) and (2.26)]. This implies 
that the factor Ca is H independent and the H depen- 
dence of the RC comes from the second factor which 
includes hypergeometric functions. There, not only 
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0 . 4 -  
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0 
-6 .0  

H = 2.0 X, = 4.6 

-4 .0  -2'.0 0 2,0 ~_ E/M04.0 

Fig. 3. The contours  of  the reflectivity projected on the A,E/M o 
plane ( H = 2 ,  X,  =4.6) .  

,H  A=0.1 X,=  5.0 

i 
-4 .0  -2 .0  0 2.0 • 4.0 

E / M ,  
(a) 

-4 .0  
I 

-2 .0  

(b) 

A=0.1 X¢= 5.0 

2.10 ~* E/Mo 4.0 

Fig. 4. The contours  of  the reflectivity projected on the H, E/Mo 
plane (A = 0.1, X,  = 5.0). CH,,, indicates the height o f  contours ,  
which is m times the unit  o f  increment,  0.1. (a )  H - 1 .  
(b)  H -  1. 

Table 1. The number of  fine peaks of  RCs (A=0 .1 )  

X,  H =0 .5  H = 1 H = 2  

1 2 (0.5) 2 (2.8) 3 (3.9) 
2 4 (4.7) 4 (4.9) 5 (5.7) 
3 6 (6.9) 6 (7.1) 7 (7.8) 
4 9 (9.1) 9 (9.3) 9 (9.9) 
5 11 (11.3) 11 (11.5) 11 (12.1) 

Integers given beneath H are the number calculated by the exact formula 
(2.22) and the figures in parentheses are the numbers estimated by the simple 
theory described in § 4. 

the linear dependence of p, q and P but also the H 
dependence of ze =½[1 + t anh  ( X d H ) ]  must be kept 
in mind. 

If H >> [X[, the D field [ D ( X )  = Do tanh ( X / H ) +  
E, omitting absorption] is practically reduced to D = 
E. If the crystal surface is located in this region, the 
Bragg reflection occurs near E =0.  When H<< IX[, 
again, the D field is independent of X but splits into 
D = E + Do depending on the sign of X. If Xe lies in 
this region, the Bragg peak is expected at E = - D o  
or +Do. In this case, the TR is practically parallel to 
the entrance surface. The model of lattice distortion 
represents a superposition of two perfect crystals if 
Xe is positive. If  it is negative, the whole crystal is 
nearly perfect so that the case is trivial in our problem. 

These general remarks will be useful for consider- 
ing the following examples. 

(i) The cases of  H >  1 (gentle distortion). Fig. 4(a) 
illustrates the contours of the refleetivity for Xe = 5.0 
and A = 0.1. For increasing H, the main Bragg peak 
shifts towards E = 0 because of the H dependence 
of ze. Accordingly, the oscillatory peaks also shift to 
the large-angle side. Nevertheless, the number of 
peaks is not changed. It is worth noting that the 
number of oscillations is determined by Xe. The 
number is practically inde~aendent of H as shown in 
Table 1. 

Another characteristic feature is that the upper 
range of E l  Mo where the oscillation occurs is limited 
by De + Mo (=4  in our model). As will be discussed 
in § 4, this is a key to understanding the oscillation 
phenomena. 

(ii) The case of  H < 1 (steep distortion). Fig. 4(b) 
illustrates similar contours for the same values of A 
and Xe as in Fig. 4(a). In this case, ce is more than 
0.999 for Xe = 5. This implies that the main Bragg 
reflection always appears near the angular position 
corresponding to TPR. The oscillatory peaks are 
nearly parallel to the H axis. 

For H < 0.4, one can see a few fine peaks also in 
the angular regions outside - (Do + Mo) and (Do + 
Mo). It is also significant that all oscillations dis- 
appear when H < - - 0 . 2 .  In order to show clearly 
these exceptional properties for steep distortions, the 
RCs for H = 0.3 and 0.2 (dashed curve) are illustrated 
in Fig. 5(a). The physical reasons will be discussed 
in §4. 
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( d) Effects of Borrmann absorption 

So far, for simplicity, we have assumed that • = 0. 
In this section, we discuss the case in which ¢ is 
finite. Usually, however, Itan ~1 is less than unity. It 
is also worth bearing in mind that the maximum of 
sin ( ~ / 2 )  is limited by A/2 to satisfy the physically 
allowable condition X~ > Xg. In perfect crystals, this 
limiting case gives a total reflection singularly at the 
fight or left edge of the Bragg peak depending on the 
sign of qb (cf. Zachariasen, 1945; Kato, 1992). 

Fig. 5(b) shows RCs for the negative limiting value 
of • and the same values of other parameters used 
in Fig. 5(a). We notice that the main features of the 
RC are not much different from those for • = 0. In 
particular, the angular positions of the fine peaks are 
nearly identical. Again, in the case of H = 0.2 (the 
broken curve), all oscillations of RC disappear. 

The main Bragg peak is different from that for 
= 0, but very similar to the RC expected for perfect 

crystals. In the present numerical model, the singular 
peak is expected to be at the angular position where 
E/Mo=-4 .  

1.0 R 
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Fig. 5. Examples of RCs for small H (A = 0.1, Xe = 5.0). The full 
curve corresponds to H = 0.3. The dashed curve corresponds to 
n-0.2.  (a) qb =0. (b) sin (~/2)=-A/2=-0.05. 

( e ) Technical problems in the computation 

The present task depends entirely on how to calcu- 
late the hypergeometric functions of complex argu- 
ments in (2.22). Owing to recent advances in computer 
technology, such transcendental functions are easily 
calculated even on the personal-computer level. Also, 
graphic software programs can give a global view of 
the function concerned. Most RCs presented above, 
which consisted of more than 100 points of reflec- 
tivity, could be obtained in about 10 min or less. 

Mathematically, the hypergeometric functions con- 
cerned are undefined when the argument c' [(2.21c)] 
takes negative integers (see, for example, Abramowitz 
& Stegun, 1964, p. 556), although the ratio to give 
the reflectivity is finite as it should be. Also, since 
each function is singular at sre = 1, it was thought at 
the beginning that computing a RC in that case would 
bring about a problem. In practice, however, no 
trouble occurred with commercial applications. 
Strikingly, at least to the author, the curve TPR of 
Fig. l (a)  and curve (vi) of Fig. l(b) were identical. 
Incidentally, the former was calculated by the 
classical Darwin formula (2.15) with the use of E + Do 
for E and the latter was obtained by (2.22). * Thus, 
all physical cases such as perfect and distorted crys- 
tals, non-absorbing and highly absorbing crystals and 
thick crystals could be dealt with by the single formula 
(2.22). 

4. A simple interpretation of the oscillation in RCs 

Since the wave function u as well as v [P.2.9] obeys 
an ordinary differential equation, its approximate 
solution is obtainable by a kind of WKB method 
provided that the distortion is gentle. (cf., for example, 
Jeffreys & Jeffreys, 1956). In this section we shall see 
how far such an approximate solution can describe 
the oscillatory behaviour of RCs described in § 3. 

For this purpose, the local wave number Akt 
defined by 

iAk = d/dx(log u) (4.1) 

is investigated. Then, we shall have an equation of 
Riccati type for Ak, 

(Ak)2- i (Ak) '=c-2(D2+icD'-M 2) (4.2) 

where the deviation field D is defined by 

D(x)=E+ip.c/2+Dotanh(ax).  [P.2.10] (4.3) 

Here, assuming a moderately weak distortion, we 
neglect the derivatives Ak' and D'  in (4.2). Also, we 
assume weak absorption so that M is replaced by Mo 

* It is true, as proved analytically in a previous paper (Kato, 
1990), that they must be identical if an (artificial) infinitesimal 
absorption is introduced. 

t From the viewpoint of the solution of the original Mfixwell 
equation, Ak is the deviation from the global wave vector Koor ~,g. 
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and /.~c is neglected in (4.3). Physically, however, a 
weak damping.of waves is to be kept. Otherwise, the 
behaviour of the RC would be singular. 

Under these approximations, the traces of Ak = 0 
are given by the two contours in E,x space, 

E + Do tanh (~x) = +Mo. (4.4) 

They are denoted by C1 and C2 in Fig. 6. The area 
enclosed between them is henceforth called the C 
band. 

Outside and inside the C band, Ak is purely real 
and imaginary, respectively, and takes twofold values, 

Ak+=+c-I(D2-M2) 1/2. (4.5) 

Thus, one may construct an approximate wave func- 
tion u by a linear combination of two independent 
solutions in the form 

u(x) = c~u+(x) exp [ i i Ak+ dx] 
Xc 

+c2u_(x) e xp[ i iAk_dx  ] (4.6) 
Xc 

where c~ and c2 are numerical constants, u+ and u_ 
are amplitudes and x~ is an arbitrary position at this 
stage. A similar expression is obtained for v(x). 

Next, we sk_~ll seek a special solution in each 
domain of E,x space, which meets the boundary 
conditions for a half-infinite crystal. The deviation 
parameter E is specified by a point on one of the 
three segments Er, E, and Era, which are divided by 
C 1 and C2 and the vertical line V2 at E = 4 in Fig. 
6. If the position of the entrance surface x~/A is less 
than around - H ,  the segment Em is practically negli- 
gible. 

If E belongs to the segment Er, the crystal wave 
excited on the entrance surface must propagate along 

CI t X U2 
, 

• , 3 E,,, I _~ ~ l J  E' 

- I 

I , 

Fig. 6. The geometrical configuration of the entrance surface and 
the C band. The two thick lines with arrows indicate the typical 
positions of  the entrance surface (see § 4 on the notations E , . ,  E~ 

and Era). 

the - x  direction (downwards) throughout the crystal. 
Therefore, only the second term on the right of (4.6) 
is to be selected. Similarly, only the second term is 
allowable when E belongs to the segment Ei because 
the crystal wave must attenuate downwards. In this 
case a large Bragg reflection is expected. In any case 
we have no reason to expect the oscillation of RC. 

When E belongs to the segment Era, the crystal 
wave between the entrance surface and the contour 
C2 consists of the two terms in (4.6) because the 
wave propagating downwards is reflected near C2. 
Here, we shall put the postulation 

u(xc)= v(xc)=O (4.7) 

after fixing xc on C2. This implies that the crystal 
wave is totally reflected and no wave propagates 
inside the C band. Under this postulation, the inter- 
ference term (ITR) of the reflectivity has the form 

I T R =  Vcos 2c -11 (D2-M2o)I/2dx (4.8) 
xc 

where V is a slowly varying function of x~ related to 
v±, which is regarded as a constant in the following 
arguments. Since D and x~ depend on the deviation 
parameter E, one can expect the oscillation of the 
RC in the range of the segment E,,,. 

Here, we are concerned specifically with the total 
number N of oscillations of the RC. From (4.3) and 
(4.8), N is given by 

X e 
N= ~r-11 {[E,o+ Do tanh (X/H)]2-1} 1/2 dX 

Xc 

(4.9) 

where the normalized parameters are used to conform 
with the convention used in § 3 and X~ and /~o a r e  
the values at the right end of E,, ;  namely, Eo = 
/9o + 1 = 4 and X~ is -eo. Integrating (4.9) numerically 
with these values, one can obtain N. Some results are 
shown in Table 1. The agreement with the values 
obtained through RCs calculated by the exact 
expression (2.22) is reasonable. 

It is clear that the oscillation does not appear when 
E belongs to the segment Er; i.e. outside the vertical 
lines V1 and V2 in Fig. 6 as well as in the case that 
Xe < ~ - H .  These are general rules for gentle defor- 
mations as described in § 3. However, one cannot 
interpret straightforwardly a few peaks outside V1 
and 1/2 mentioned in § 3(c)(ii). This is unavoidable 
because the WKB approximation may break down 
for a steep deformation particularly near the contours 
C1 and C2. Similarly, the fact that the oscillations 
disappear for H less than 0.2 is not explained directly 
by the simple theory. Physically, however, it can be 
anticipated because then a kind of tunnelling of the 
waves may occur through the C band. In fact, the C 
band becomes thinner and thinner with decreasing H. 
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5. Discussion 

The reflectivity of the Bragg reflection for the specific 
lattice expansion described in the Introduction can 
be given by (2.22). Although the expression itself is 
simple, the hypergeometric function involved is not 
very popular. For this reason, results of RCs for 
typical cases were shown. In § 3, RCs and contour 
plots of the reflectivity were illustrated for various 
parameters. Through this task, characteristic features 
of RCs could be deduced. 

In order to understand RCs a simple theory based 
on the WKB approximation was developed in § 4. In 
general, both O and G waves can be represented in 
terms of two exponential functions [cfi (4.6)] 
replacing the hypergeometric function in the exact 
theory. A useful concept is the C band in x ,E  space, 
which was defined as a region where the local wave 
number is purely imaginary. Most of the features 
described in § 3 can be interpreted by the geometrical 
configuration of the C band with respect to the 
entrance surface, its form depending on the width H 
of the deformed region. 

The oscillation of RCs occurs only when the bend- 
ing C band (i.e. the TR) lies below the crystal surface. 
The C band plays a role analogous to the forbidden 
energy band of electrons in a solid. It reflects the 
crystal wave because propagating waves cannot exist 
in it. The oscillation of RCs is due to the interference 
of two waves propagating downwards and upwards 
in the crystal in the manner of waves in a slab crystal. 
The number of oscillations estimated by the simplified 
theory agrees well with that obtained by the exact 
theory. 

If the entrance surface simply cuts the C band, a 
large Bragg peak is expected. Notice that the angular 
width of this peak is nearly the same as that of the 
perfect crystal. This is understandable because the 
width of Ei is always 2Mo as shown in Fig. 6. If there 
exists no C band below the crystal surface, the crystal 
wave only propagates downwards so that the oscilla- 
tion is not expected. These principles will be widely 
applicable to other forms of lattice distortion. 

As mentioned in the previous paper, the original 
theory is also applicable to a wide variety of distor- 
tion, provided that the distortion is of a monotonic 
and stratified type. If one remembers the simple 

relation 

[ ( 1 -  F) exp ( a x ) - ( 1  + F) exp ( - a x ) ]  

x [exp (ax) + exp ( - ax ) ]  -1 

= tanh (ax )  - F (5.1) 

and notices that the constant F can be absorbed into 
the deviation parameter E in the D field, [P.2.10], 
[P.4.2], (2.22) can be used with some modifications 
of the relevant parameters. Obviously, the present 
theory corresponds to F - - 0  and the deformation 
assumed by Bensoussan et al. (1987) corresponds to 
F = - 1 .  Therefore, the present theory could be used 
also in their case. 

Experimentally, the oscillation number can be used 
to estimate the depth of a heterojunction of two 
crystals or the boundary of an impurity-doped region 
below the crystal surface. Also, the pitch of the oscilla- 
tion can be used as a measure of the angular resolution 
in diffraction apparatuses which need a subsecond 
resolution. 

As shown in Fig. 5, one may not detect the oscilla- 
tion even with a sufficiently high-resolution power in 
angle. Such a negative observation, however, is a good 
indication of small H, namely a sharp junction of 
two crystals having different lattice spacing. 
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